Finally we add in the usual module wrapping and the driver is done.
#ifndef MODULE
static int io = 0x300;
#else
static int io = -1;
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("A driver for an imaginary radio card.");
MODULE_PARM(io, "i");
MODULE_PARM_DESC(io, "I/O address of the card.");
EXPORT_NO_SYMBOLS;
int init_module(void)
{
if(io==-1)
{
printk(KERN_ERR
"You must set an I/O address with io=0x???\n");
return -EINVAL;
}
return myradio_init(NULL);
}
void cleanup_module(void)
{
video_unregister_device(&my_radio);
release_region(io, MY_IO_SIZE);
}
#endif
In this example we set the IO base by default if the driver is compiled into the kernel where you cannot pass a parameter. For the module we require the user sets the parameter. We set io to a nonsense port (-1) so that we can tell if the user supplied an io parameter or not.
We use MODULE_ defines to give an author for the card driver and a description. We also use them to declare that io is an integer and it is the address of the card.
The clean-up routine unregisters the video_device we registered, and frees up the I/O space. Note that the unregister takes the actual video_device structure as its argument. Unlike the file operations structure which can be shared by all instances of a device a video_device structure as an actual instance of the device. If you are registering multiple radio devices you need to fill in one structure per device (most likely by setting up a template and copying it to each of the actual device structures).